TACTICAL URBANISM FOR THE SMART STREET

THE EFFECTS OF AUTOMATION AND INFORMATION TECHNOLOGIES ON CONTEXT-SENSITIVE STREET PLANNING

Andrew Mondschein, PhD AICP; Michael Salgueiro; Marnissa Claflin; Laura Nagle

Department of Urban and Environmental Planning UVA School of Architecture

STREET COLLISION

Two major movements influencing local transportation planning, management, and design

"SMART" MOBILITY

- Automation technology
- Information and communication technologies
- Shared systems
- Data-driven analytics and control **CONTEXT-SENSITIVE STREETS**
- Integrated transportation/ land use planning
- Flexible streets and curbs
- Pilot-driven planning

CAUSE FOR CONCERN: WAZE

New Jersey Town Restricts Streets From Commuters To Stop Waze Traffic Nightmare

May 8, 2018 · 4:01 PM ET

SAMANTHA RAPHELSON

Source: Waze

Your Navigation App Is Making Traffic Unmanageable

The proliferation of apps like Waze, Apple Maps, and Google Maps is causing chaos

By Jane Macfarlane

Waze Hijacked L.A. in the Name of Convenience. Can Anyone Put the Genie Back in the Bottle?

Traffic apps turned the city's neighborhoods into "shortcuts." Now furious residents are attempting to take them back, street by street

By Jonathan Littman - August 20, 2019

RESEARCH QUESTIONS

- How are cities addressing technology-driven and context-sensitive street planning?
- How do these motivations manifest in urban visioning and implemented policies/regulations?
- Are cities taking an integrated approach or a parallel approach?
- What are the opportunities and obstacles toward integrated technology-enabled, context-sensitive street planning and management?

THEMES IN THE LITERATURE

- Planning vs. management in smart cities (Batty 2013)
- Increasing privatization of city systems (Vanolo 2014)
- Regulation of curbs and steets (Zalewski 2012)
- Bottom-up, "tactical," planning and action (Lydon & Garcia 2015)
- Facilitating engagement and opposition within technology-driven planning (Mondschein et al. 2019)

CASE STUDY APPROACH

Three Cities

Los Angeles, California, US Technology innovator Barcelona, Catalonia, Spain Urban design innovator Seattle, Washington, US Street management innovator

All are tackling technology-driven and context-sensitive planning.

CONTENT ANALYSIS

For Each City	Smart Mobility	Local Context
Vision		
Policy/Implementation		

LOS ANGELES

	Smart Mobility	Community / Context-Sensitive Streets
Vision	Technology Action Plan Strategic Implementation Plan	Transportation Happiness Mobility Bill of Rights
Policy / Implementation	Code the Curb ATSAC 3.0 Mobility Data Specification Blue LA Carshare	Livable Streets Vision Zero Public Space Programs: Great Streets; Play Streets; Open Streets

MOBILITY PLAN 2035

Citywide Vision, Mission, Strategies, Goals & Objectives

- Safety first
- World-class infrastructure
- Access for all Angelenos
- Collaboration, communication and informed choices
- Clean environments and healthy communities

LADOT STRATEGIC PLAN

Department-Level Strategy, Goals, Objectives, Principles

- An innovative department
- A responsive and transparent department
- A safe and healthy city
- A livable and sustainable city

MOBILITY BILL OF RIGHTS

User-Centered Values

TRANSPORTATION HAPPINESS METRICS Key Performance Indicators

- Accessibility
- Reliability
- Safety & Comfort
- Culture & Community
- Equity & Transparency

TRANSPORTATION TECHNOLOGY STRATEGY Tactics

(DIAGRAM 2. POLICY DOCUMENT RELATIONSHIPS)

Source: Measuring Transportation Happiness [DRAFT 1.2 - MAY 2018]

MOBILITY DATA SPECIFICATION

Source: City of Los Angeles

BARCELONA, ESP

	Smart Mobility	Community / Context-Sensitive Streets
Vision	Smart City Barcelona Urban Mobility Plan 2013-2018 (Limited "smart mobility" content)	Equitable Mobility Goals
Policy / Implementation	Third Party (Private Operator) Policy for technology pilots: Mobileye, C-ITS, NeMo Internet of Things street monitoring Mobility Urban Values (MUV) app	Superblocks

Ajuntament de Barcelona

Urban Mobility Plan of Barcelona 2013-2018

MAIN LINES OF ACTION

1 ORGANIZATION OF THE CITY'S URBAN PATTERN IN SUPERBLOCKS AND OTHER CALMING MEASURES

2 IMPLEMENTATION OF THE NEW ORTHOGONAL BUS NETWORK

 $\mathbf{3}_{\text{TOTAL DEVELOPMENT OF}}_{\text{CYCLING NETWORK}}$

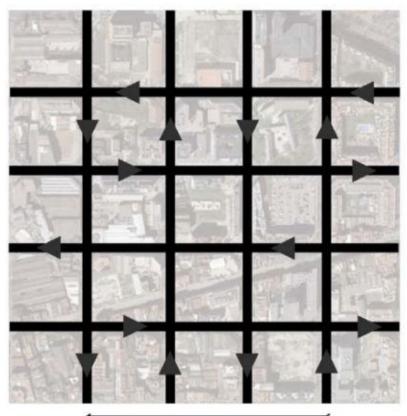
4 MANTAIN THE CURRENT LEVEL OF TRAFFIC SERVICE

5 COMPLIANCE WITH REGULATORY PARAMETERS OF ENVIRONMENTAL QUALITY

6 PROMOTION AND POSITIVE DISCRIMINATION MEASURES OF HIGH OCCUPANCY VEHICLES

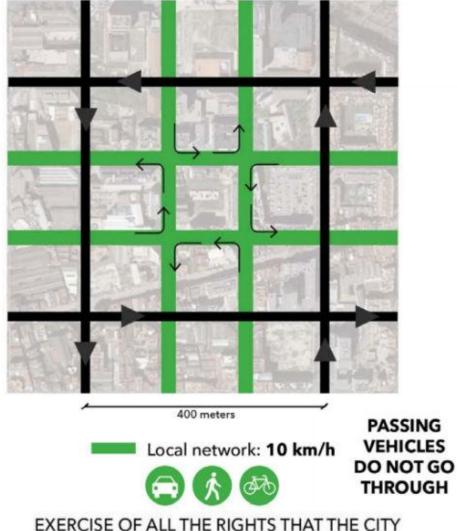
7 REVIEW OF THE REGULATION OF PARKING ON AND OFF ROAD

 $8_{\rm IMPROVING THE EFFICIENCY} \\ {\rm of loading} \\ {\rm and unloading} \\$



Road hierarchy in a Superblock model

CURRENT SITUATION


400 meters

Basic network: 50 km/h

HIGHEST AIM: PEDESTRIAN.

SUPERBLOCK

OFFERS. HIGHEST AIM: CITIZEN.

SEATTLE

	Smart Mobility	Community / Context-Sensitive Streets
Vision	New Mobility Playbook Autonomous Vehicle Workgroup Driverless Seattle white paper	New Mobility Playbook
Policy / Implementation	(New Mobility Playbook includes extensive set of programs and policies that could be implemented)	Flexible Curbside Management Guide SDOT Home Zones Program

NEW MOBILITY PLAYBOOK

Our five plays are to:

PLAY 1: Ensure new mobility delivers a fair and just transportation system for all

PLAY 2: Enable safer, more active, and people-first uses of the public right of way

PLAY 3: Reorganize and retool SDOT to manage innovation and data

PLAY 4: Build new information and data infrastructure so new services can "plug-and-play"

PLAY 5: Anticipate, adapt to, and leverage innovative and disruptive transportation technologies

SEATTLE FLEX ZONES

Flex zone functions are prioritized based on surrounding land use

	Residential	Commercial & Mixed Use	Industrial
1	Support for Modal Plan Priorities	Support for Modal Plan Priorities	Support for Modal Plan Priorities
2	Access for People	Access for Commerce	Access for Commerce
3	Access for Commerce	Access for People	Access for People
4	Greening	Activation	Storage
5	Storage	Greening	Activation
6	Activation	Storage	Greening

Source: City of Seattle

KEY THEMES

- Comprehensive visioning sees technology and social objectives as compatible
- Openness to public-private partnership
- Data collection and analysis are government imperatives
- Technologies are understood as a transportation management tool
- Missing: Technology as means to shift locus of control

CONCLUSIONS

- Can our current policies solve the Waze problem?
 - Private companies continue to assert rights to data and system-level control
 - Common data specifications may be a start
- Technologies could shift "who decides" how streets are managed
 - Data aggregation can become data control
 - Significant opposition likely from individuals and companies
- Future research: Planner interviews and traveler surveys
- Future research: Specifying a community-based system of street planning and management

THANK YOU!

mondschein@virginia.edu